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Abstract: This study explores how the interplay between data and model design shifts 6th 
graders’ students' ideas about diffusion as they build a range of models (“paper and pencil” and 
computational models). We present a new web-based environment and approach that integrates 
model-based and data-based features in the same display which facilitates the comparison of 
models and real-world data. Further, we illustrate how this environment and approach lead 
students to converge on one canonical scientific model. 

Introduction and Background 
Modeling has become a core element in scientific practice (Harrison & Treagust, 2000, Pluta et al., 2011; Halloun, 
2011). Data plays a fundamental role in the development and evaluation of scientific models, anchoring the 
modeling process (Fuhrmann et al., 2018; Schwarz et al., 2009). However, model-based practices remain largely 
separated from data-based ones in science classes. Recent work shows that linking experimental data and scientific 
models in science activities has strong potential to improve student learning. For example, activities designed 
using Bifocal Modeling (Blikstein et al., 2016), which enables real-time model and experimental data comparisons, 
can support conceptual understanding, modeling, and meta-modeling competencies (Blikstein et al., 2016; 
Fuhrmann et al., 2018). Other researchers suggested that interlocking models with one another to draw attention 
to microscopic entities and their behaviors supports meaningful practice (Georgen & Manz, 2021). Gouvea & 
Wagh (2018) showed that coupling experiments and modeling in learning activities helps students learn how to 
engage in scientific practice by focusing on the goals of their investigations, allowing for comparison and 
triangulation. Much of the existing research on integrating modeling and data practices has involved students 
using pre-designed models. Little work has focused on students designing their own computer models using data 
to validate their models. This research is needed to understand the learning opportunities that arise from comparing 
real-world data and computational models, and, per the conference theme, how innovative technologies can 
support more effective science learning experiences. 

In this paper, we ask how the interplay between data and model design shifts 6th-graders’ ideas about 
diffusion as they build a range of models and refine their explanations based on data. We present a web-based 
environment and approach that integrates model-based and data-based features in the same display, facilitating 
the comparison of models and real-world data. Further, we illustrate how the environment and approach lead 
students to explore the interplay between observed data and the designed model during a unit on diffusion.  

 
Methods 
Design, settings, participants & instructional sequence 
This study seeks to investigate ways to make computational modeling a sustained practice in middle school 
classrooms. We developed a domain-specific block-based online modeling environment based on scientific 
modeling research and previous studies on linking model-based and data-based practices (Blikstein et al. 2016; 
Fuhrmann et al., 2018; Gouvea & Wagh, 2018). The domain-specific blocks make the computational modeling 
accessible for students to focus on testing and refining their ideas about mechanisms underlying phenomena (Kahn, 
2007; Wagh & Wilensky, 2017; Wilkerson, Wagh & Wilensky, 2017). Figure 1 shows the modeling platform, 
with the model and the display of the experiment side-by-side. This paper uses data from a pilot study with 43 
students from two 6th-grade classes taught by the same science teacher in a middle school in California.  

We designed the diffusion unit based on the Bifocal Modeling framework (Blikstein, et al. 2016). 
Students worked in pairs over five class periods. First, they conducted an experiment in which they compared the 
rate of spread of ink in hot and cold water. They ran two iterations and documented their measurements before 
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plotting the data. Next, they designed a paper model to explain how dye spread in hot and cold water. Students 
then used a computational modeling environment to implement and revise their paper models. Finally, they tested 
their various models by comparing models’ behavior with the experiment to select the model that best explained 
diffusion. Through class discussions, students eventually converged on a single model.  
 

Figure 1 
The computational modeling environment 

 
 
Data sources and analysis 
Data included observation notes, student artifacts, and pre/post-tests. We analyzed whole-class and student-pair 
data. In the observation notes, we identified critical junctures when students were, (1) constructing conjectures or 
explanations for the phenomenon, and (2) comparing the experiment and model. We analyzed open-ended 
responses to see how they shifted from pre to post. We focused on the action words students attributed to the 
process of diffusion (e.g., spread out, bounce off, infect), indicative of mechanistic reasoning about the 
phenomenon (Russ et al., 2008). These terms also align with the programming blocks in the environment. Our 
initial rubric was developed through open coding and further refined through reference to 10 example responses. 
Initially, our agreement was 60%, but we reached 89.12% agreement after several cycles of refinement.  
 

Figure 2 
The mechanisms of diffusion as reflected in pre- and post-test open-ended answers 

 
 
Results 
Results from pre- and post-test analysis (Figure 2) showed a shift in the mechanistic language students used to 
describe ink spread. At the pre-test, student responses varied greatly. By contrast, in the post-test, a majority of 
students drew on the “bounce off” model, a canonical explanation for diffusion. For example, one student said on 
the post-test:“The paint particle will bounce off the water particles, making it spread around. If it was in cold 
water, it would move slower than in hot water. The paint will sink before it starts spreading.” Below, we examine 
how this shift in language might have come about through the instructional sequence.  
1. Generating ideas for how ink diffuses in water: In their paper models, students drew their explanations of 
experimental results. While students did not talk about particles to describe the phenomenon during the 
experimentation phase, they included particles in their paper models (e.g., mentioning type and color of particles). 
After completing this activity and discussing their ideas, students began to converge around two potential models: 
a "spreading apart" model that did not directly explain how particles interact with each other, and a "combined” 
model, in which dye particles and water particles combine to create larger particles. 
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Figure 3 
Students’ “paper and pencil” models: a. the “spreading apart” model, 
and b. the “combined” model 

 
2. Translate from paper to computer, discard ideas that cannot be explained based on experiment, create new 
models (Figure 4). Students who drew the “combined” model used the code to create the same model (Figure 4a). 
When running their model, they noticed that the particles in their model attached to each other when interacting, 
resulting in big blobs. After comparing their model with the video data, this student pair realized that these blobs 
were missing from the real experiment and therefore discarded the "combined” model. These students explored 
other more ways to explain the dye behavior in the water using the modeling environment. 
3. Converged on three candidate models. At a class level, students converged on three candidate models: the 
"infect" model (color particles infect water particles, which then turn blue; Figure 4b); the "weighs more" model 
(particles are heavier in cold water than in hot water; Figure 4c) ; and the "bounce off" model (particles spread by 
bouncing off each other, and they bounce off at different speeds according to temperature; Figure 4d).  
 

Figure 4  
Students' design of four models: a. “combined” model, b. “infect” model, c. “weighs more” 
model and d. the “bounce off” model. 

 
This persistence of three models created noticeable tensions in the classroom. Students are used to being given 
the correct answer by the teacher at this stage rather than seeking it themselves. Additionally, the teacher was 
concerned about students using incorrect models and anxious to tell them how diffusion is defined. Nonetheless, 
the students and the teacher had to figure out how to navigate the situation by running additional experiments.  
4. Converging on one model. To resolve the situation, students discussed with their partners potential experiments 
that could help prove or disprove their models. For example, to disprove the "weighs more" model, students came 
up with an experiment in which they used a scale to weigh the water when it was hot or cold; they discarded the 
model when they noticed the weight was the same. To evaluate the "infect" model, they decided to boil the 
diffusion water to examine the condensation on a cold plate; since the evaporated water was transparent, students 
agreed that the dye had not infected the water molecules and then discarded this model. Students in this class 
thereby converged on the “bounce off” model, which is the canonical explanation of diffusion. 

Conclusions 
Our findings indicate that creating models with real-world data provides students with learning opportunities that 
would hardly arise if they focused on model-based and data-based practices separately. We observed a shift in the 
mechanistic language students used to describe diffusion, shifting towards language aligned with a final canonical 
model. Contributing to existing work on how such convergences occur in classroom settings (see Lombard & 
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Weiss 2018 for a review), our findings suggest that the juxtaposition of video data of a real experiment and the 
model facilitated the process of generating multiple models, followed by subsequent comparison, evaluation, 
revision, and rejection. The scope of this paper did not allow for analyses of how the teacher guided this 
convergence, though previous research suggests significant influence (Millar, 2010). In future work, we intend to 
continue to examine the types of learning opportunities that arise from comparing real-world data and 
computational models, the conditions under which such opportunities arise and what designers and educators need 
to do to scaffold students' learning while using models authentically as tools of inquiry. Such lines of inquiry 
could additionally explore the ways that students’ model building shapes their perception of science practices and 
of their agency as scientists. 
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