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Introduction 
In this symposium, we address two issues that extend the body of research on students' computational 

modeling: enabling greater access to computational modeling activities and sustaining such activities within 
educational settings. Modeling has become an essential part of many scientific disciplines -- a core element in 
professional scientific practice for formulating and testing hypotheses, justifying new claims, and explaining 
natural and artificial phenomena (Pluta et al., 2011; Halloun, 2011). The involvement of students in developing a 
scientific model has been shown to have many pedagogical affordances: models can be used as inquiry tools, 
creating meaningful learning opportunities (Gilbert et al., 2016; Passmore et al., 2014; Schwarz et al., 2012); 
additionally, models enhance students' disciplinary knowledge (Passmore et al., 2014) and help develop their 
understanding of the epistemology behind constructing scientific models (Lehrer et al., 2006; Schwarz et al., 
2005). In addition, it has been found that students who engage in designing their models also develop a critical 
perspective about models and metamodeling knowledge (Wagh et al., 2018; Fuhrmann et al., 2018). The last few 
years have seen modeling activities gradually take root as part of science education. Incorporating modeling has 
become a key goal in many countries' national standards in the past decade and a core component of school 
curricula (Gilbert et al., 2016), as evidenced by the fact that national policy documents have centered modeling 
activities in the curriculum (National Research Council, 2007; NGSS, 2013) and by the fact that modeling is 
woven throughout the Next Generation Science Standards (NGSS). 

With the realization that constructing models is essential and computational modeling should be learned 
in schools, new computer modeling environments and designs have proliferated. As a result, today, a wider range 
of robust, mature, and carefully designed software and hardware tools are available for modeling in K-12. 
Nevertheless, several issues remain to be addressed before students engage in meaningful modeling activities, 
create their models based on data, and share them and discuss them with others, thus participating in activities 
aligned with authentic scientific practices. 

The papers in this symposium focus on the big question of what is next in domain-specific computational 
modeling languages/environments for K-12 students. To this end, we address two relevant issues, namely 
accessible and sustainable development. Here, we define accessible development as development that enables 
students with different interests, contexts, and abilities to begin interacting with the learning materials. This can 
be done by lowering the threshold to begin using the tools and/or by catering to different forms of expression to 
motivate students to begin engaging with the tools. Increasing accessibility to a learning environment is necessary 
when considering schools with teachers who may or may not have the skills to support a class of students 
constructing computational models. Students' need for support in constructing a computational model is 
significant, and learning design needs to consider how to offload some of this responsibility from the teacher to 
the computational toolkits themselves. 

We define sustainable development as creating learning materials that can continue generating new 
activities over time, be it for additional content, for higher ability levels, or for other extensions. Ensuring the 
sustainability of innovative and expressive activities such as computational  modeling in schools is an important 
endeavor that has been undertaken by several leaders and researchers (Horn et al., 2011; Kelter et al., 2021). 
Building upon these efforts, there is a need to continue developing and diversifying the strategies for supporting 
the continued use of computational modeling in science learning. In the process of variation and selection in 
different contexts, this would advance the broader vision of democratizing people's use of computation as a tool 
to express their assumptions regarding phenomena in the world and of generating dynamic representations that 
can be compared with these assumptions. 

Paper 1 presents a nuanced framework that differentially integrates divergent data sources with modeling 
activities and labs. Paper 2 introduces the Much.Matter.in.Motion platform for modeling, which unifies 
computation across systems in chemistry and physics. It demonstrates the idea with research into learning about 
electricity through computational modeling. Paper 3 presents research with a novel extension to the Scratch 
environment that enables topical computational modeling. Further, this paper looks at related research that 
highlights how students’ ideas are expressed visually and evolved through the programs they construct. Paper 4 
presents work and research with the StarLogo Nova platform. It looks at how programming blocks might be used 
for learning a variety of scientific phenomena across the curriculum while enabling the opening of these blocks 
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to get a deeper understanding of the computational constructs. Finally, Paper 5 presents a framework for making 
computational modeling in science a sustainable activity in middle schools. 

Each of the papers in the symposium addresses accessibility and sustainability in different ways. 
Regarding accessibility, common to all the papers is the use of functional computational blocks that are limited 
to a subset of phenomena and form a library of concepts that students can use to construct their models. By limiting 
the library of concepts and aligning them with a variety of intuitive concepts, it is made possible for the students 
to immediately begin constructing with relatively little support. In Paper 4, these blocks can be opened up during 
the learning process, supporting students as they gradually come to understand the more basic computational 
constructs the blocks are built from.  

As to sustainability, the papers provide an array of strategies. Paper 5 specifically addresses sustainability 
and presents a framework with several components that could support the continued use of modeling in schools. 
Papers 1 and 3 both employ Bifocal Modeling, an approach that combines the use of labs and models to facilitate 
easy comparison. In this way, additional practices common in science education are integrated with modeling, 
thus strengthening the holding power of those practices. 

Similarly, Paper 2 intersperses physical experiments into the learning unit, with the express goal of 
helping students transition back and forth between experience and representation. Integrating standard science 
education practices into learning units that engage with modeling can also be seen in Paper 1, where a framework 
for integrating data practices with modeling is presented. In Paper 4, using the mature StarLogo Nova platform 
and beginning with a more limited library of blocks enables the gradual transition to a full-blown modeling toolkit 
by gradually unpacking these blocks, providing for an extended developmental learning process that can continue 
even over several years. Another strategy used in paper 4 to increase sustainability is creating several libraries, 
each of which addresses different curriculum topics so that modeling can be integrated into learning throughout 
the school year. Finally, in Papers 2, 3 and 4, the limited set of blocks enables modeling a broader range of 
phenomena — systems in chemistry and physics — by capturing the computational similarities among diverse 
phenomena; this supports the vision of continued use of the same platform as students progress in their studies 
and learn new topics in these sciences. 

The session will open with introductory words. Five paper contributions will then follow. Our discussant, 
Prof. Uri Wilensky, will draw upon the various strategies developed to increase accessibility and sustainability to 
interrogate some of their implicit assumptions underlying the learning designs and the related research presented 
in the papers. The symposium intends to integrate and focus our efforts on furthering scientific computational 
modeling in schools, streamlining it to the burning issues we have addressed. To summarize, the papers 
comprising this symposium acknowledge several essential issues regarding computational modeling in science. 
The more we know about this topic, the more we are driven to further explore and extend our understanding. We 
hope that the symposium helps democratize this important science learning component by addressing key issues 
that can make modeling more widely available for all learners and relevant throughout their studies. 

Paper 1: Comparing and Contrasting Real-World Data and Models: Cognition, 
Pedagogy, and Implementation 

Engin Bumbacher, Tamar Fuhrmann & Paulo Blikstein 

 
Empirical data plays a crucial role in scientific modeling: scientists use such data to construct, refine or 

decide between possible models (Passmore et al., 2009), and assess the adequacy of a given model by the degree 
to which that model is able to explain the data (Passmore & Svoboda, 2012). However, approaches to model-
based learning (MBL) have predominantly focused on model-based and data-based practices separately 
(Bumbacher et al., 2018). While these reductive approaches have helped students improve in the respective 
practices (Zimmerman, 2000), they have yet to prove successful in helping students develop a deeper grasp of the 
practices and epistemic understanding of the scientific endeavor (Berland et al., 2016; Chinn & Malhotra, 2002). 

Recent technological advances hold the promise to support more integrative approaches that interweave 
models and data. For example, the Bifocal Modeling framework (Blikstein, 2014, 2016) suggests integrating 
technologies for real-world data collection with technologies for computational modeling to enable real-time 
comparisons of simulated and real data. Studies have shown that activities designed according to this framework 
can develop students’ conceptual understanding and meta-modeling competences (Blikstein, 2014; Fuhrmann et 
al., 2018), but more work is needed to examine the types of learning opportunities that arise from comparing real-
world data and computational models, as well as the conditions under which they arise. 
Integrating real-world data in the modeling process provides learning opportunities that would not arise if students 
just focused on the models. For example, real-world data might encourage students to explore more deeply the 
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underlying features of a phenomenon (Schwarz, Akcaoglu, Ke, & Zhan, 2013) in order to decide on criteria of 
model-fit. Similarly, real-world data might also inform the evaluation of models, when students have to decide 
how well a model fits the data, and what conclusions are justified by the data (Holmes, Wieman, & Bonn, 2015). 
But there is not just one type of data source, and there is not just one way of comparing models and data. We 
argue that the type and quality of learning opportunities arising from comparing models and data are dependent 
on the type of data source being used, and the way models and data are brought together. For example, juxtaposing 
a model-based simulation of bacterial growth with time lapse recordings of an actual experiment might encourage 
students to engage differently in the comparison of models and data than merely contrasting the growth curves of 
the simulated and real bacteria.  

Thus, developing technologies and pedagogical approaches that productively integrate data and models 
necessitates a better understanding of the types of data sources and types of comparisons of models and data. This 
is particularly relevant today, as the past decade has seen an explosion of novel empirical data sources and means 
of collecting data (Lee & Wilkerson, 2018). Novel technologies like probeware, wearable sensor technologies or 
remote laboratories enable individuals to collect quantitative data continuously and in real-time. The internet 
provides access to large, publicly-available datasets in the form of spatial data, quantitative data tables, or  
qualitative data such as videos. Further, computer vision algorithms can even turn non-quantitative data like 
videos and images into quantified datasets (e.g. Hossain et al., 2016). Depending on the data source, real data 
might be produced and compared to models in real-time or asynchronously. And depending on the data source, 
real and simulated data can be compared in side-by-side visualizations or overlaid in the same visualizations; they 
can be compared across multiple dynamically linked visualizations, or quantitatively by means of analysis tools, 
and so on. Each of the data sources necessitates different data-related skills, and each of the types of comparisons  
has different implications for what students might focus on and how they might reason when using models and 
data. In this presentation, we present a taxonomy of these types of data sources and types of comparisons, and 
elaborate on how they might impact possible learning opportunities. This work is necessary to guide the 
development of technologies and activities for rich scientific inquiry through the integration of computational 
models with real-world data. 
 

Paper 2: Eighth-Grade Students Learn Electricity through Constructing 
Computational Models with Much.Matter.in.Motion 

 
Janan Saba, Elon Langbeheim, Hagit Hel-Or & Sharona T. Levy 

  
This study focuses on students' learning of the concept of electric current through the lens of complex 

systems by constructing computational models with an iconic interface. We focus on how students develop mental 
models that associate properties of a circuit at the macro-level, such as the magnitude and direction of the electric 
current, with entities at the micro-level, such as electrons and their motion (Eylon, & Ganiel, 1990). We examine 
the students’ development of mental models as they construct computational models with an early widget-based 
version of the Much.Matter.in.Motion platform (MMM; Levy et al., 2018). One of MMM's main affordances is 
sustainability, which enables modeling of many physics and chemistry phenomena. 

Learners rely on cognitive constructs termed “mental models” when explaining the world around them 
(Norman, 1983). They develop these mental models through interactions with natural or human-made systems; 
yet, these models are often partial, unstable, and inaccurate. It is important to support students’ expression of these 
mental models and to follow their transformations through learning. This process is facilitated by having this 
expression take the visual form of drawing, on the one hand, and become animated through the generative power 
of computation, on the other hand. 

Most computational platforms that were designed to support teaching of electricity are based on a macro-
level representation of circuits (e.g. Roll et al., 2018), with only a few environments attempting to introduce 
electric circuits from a micro-level perspective (Sengupta & Wilensky, 2009). In our study, we developed the 
MMM modeling platform (created with NetLogo [Wilensky, 1999]) for building and running computational 
models. MMM enables model construction at the micro-level without coding, by using pre-built model features 
that can be added and modified. To increase the accessibility of MMM, it is set up in such a way that users first 
draw the boundaries of their model conductor, and then add particles for which they define size, initial speed, 
heading, and interactions. After constructing the model, students can run the model and observe the resulting 
behavior. Figure 1 shows a screenshot of the MMM platform with a constructed model. The brown particles 
represent the atoms, and the red particles represent electrons.  
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Figure 1. The Much.Matter.in.Motion (MMM)  interface  

 
Thirty-three eighth-grade students’ learning by constructing models is compared with 23 students’ 

learning with a normative curriculum, during six 1.5-hour sessions. The learning process included physical 
experiments and modeling activities. Students completed pre-and-post-test questionnaires and four students were 
interviewed. Activities were logged and screen-captured. 

The interaction between time and group (F (1,54)=6.67, p<0.05) shows the superior learning of the 
experimental group. The specific component that contributes to this significance is the micro-level reasoning on 
the systems.  A two-step cluster analysis was conducted on the students' responses to the open-ended items in the 
questionnaires regarding simple electric circuits. Five mental models were revealed that differed across several 
features: the balance between physical macro-level components and micro-level descriptions and the degree of 
integration between the micro and macro levels. Comparing the magnitude of the transitions between mental 
models across the two groups shows a significant transition magnitude for the experimental group between pre- 
and post-testing compared to the comparison group. 

Our study shows that constructing micro-level models of electric conductors advances micro-level 
conceptualization of the electric circuit, and does not diminish the overall macro-level understanding. In addition, 
cluster analysis is an important methodological advancement compared to prior studies that examined individual 
responses without an integrated approach that combines all of the knowledge elements expressed by each student. 
Results indicate that enabling students to construct computational models using MMM promotes progress in 
thinking about electric circuits: from simpler mental models that are focused at the macro-level in the beginning 
of the learning process to more sophisticated ones at the end that include the micro-level entities and interactions. 
This approach to learning science is now being extended to additional topics.  We are now studying the 
sustainability of these ideas over time and across topics.   

Paper 3: Unpacking Students' Reasoning Using Computational Models With 
Domain-Specific Blocks 

Cassia Fernandez, Tamar Fuhrmann, Paulo Blikstein & Roseli de Deus Lopes 
 

Engaging students in modeling practices to make sense of scientific phenomena and the nature of science 
is the focus of recent reforms in science education (NGSS, 2013; NRC, 2012). Creating a computational model 
can be a valuable way for students to create and test their own hypotheses and refine their understanding of natural 
phenomena (Gilbert et al., 2016; Passmore et al., 2014; Schwarz et al., 2012). Although the constructivist idea 
that students are not “blank slates” but rather possess a wide range of previous knowledge on natural phenomena 
is well established (diSessa, 2018), there is, still, less research than needed about what students already know in 
specific domains of science. Thus, often, educators and designers (by no fault of their own) are not completely 
aware of preconceptions that students might bring to classrooms, what they are confused about, or how their ideas 
about the world fit with what they are attempting to learn. This paper aims to analyze students’ conceptual 
trajectories while programming a computational model, in order to understand their initial, nonstandard, ideas 
about diffusion and how those ideas evolve. We are interested in learning how interaction with a constrained 
model can reveal students' thinking and, thus, inform designers on how to design tools and languages that 
acknowledge students' ideas and sensemaking (Wilkerson-Jerde et al., 2010; Wagh et al., 2017).   
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Our preliminary findings are drawn from a pilot study conducted through individual online sessions with 
seven 5th-grade students. Each session lasted one hour and involved model creating and comparison with data 
(Fuhrmann et al., 2018). Students observed a diffusion experiment and designed a model to explain the 
phenomenon at the particle level, using their experimental observations to validate and refine the model. For these 
sessions, we designed an initial version of nine domain-specific programming blocks integrated into Scratch as 
an extension. By combining our blocks with the original Scratch blocks, we expected students to test and refine 
their own ideas about diffusion, using scaffolding tasks and questions from the researchers.  

The use of block-based modeling tools has many affordances for young students. For example, it allows 
them to develop their own scientific models without being overwhelmed by text programming in a dynamic 
process (Gouvea et al., 2017). By doing so, students can revise their ideas and make changes through many 
iterations. According to our findings (see Figure 2), designing computational models in this way helped students 
externalize scientific ideas that would otherwise remain tacit. Through coding their models, students revealed 
unexpected concepts such as molecule “transmutation,” atoms that would simply disappear or “melt,” and 
particles with volition. Being able to express those ideas in code was crucial for students to be able to then reflect 
on those ideas, understand their possible flaws, and refine their initial ideas.  
 

 
Figure 2. An example of student initial ideas and the evolvement process illustrated with blocks 

 
The use of blocks can be a valuable strategy to explore students' reasoning processes: the translation of ideas into 
code unpacks students' thinking. It reveals inadequate conceptions since it forces students to make their thinking 
visible. By being aware of students' prior knowledge and identifying possible sources of confusion, science 
educators can mediate the scientific knowledge-building process for learners; help them make sense of how 
scientific models are generated and validated; and scaffold learners' conceptual understandings rather than merely 
giving them the "correct answer." While learning how students reason about a phenomenon, designers and 
researchers can create more domain-specific blocks that acknowledge students' initial ideas and sensemaking 
processes.  

Paper 4: Custom Blocks in StarLogo Nova: Lowering Barriers and Providing 
Pathways to Further Learning 

Daniel Wendel & Eric Klopfer 
 

Agent-based computational modeling (ABM) has been shown to help students reason about the parts and 
interactions in systems that give rise to observed scientific phenomena at the system level (Klopfer, 2003; Resnick, 
1994; Sengupta & Wilensky, 2009; Wilensky, 1999). Using models has shown some benefit (Yoon et al., 2016), 
and modifying and creating models provides a rich opportunity to engage in both the practice of modeling and in 
computational thinking (Sengupta et al., 2013; Wagh, Cook-Whitt, & Wilensky, 2017; Weintrop et al., 2016), 
both of which are essential skills for modern scientists (Foster, 2006). However, our experience and the experience 
of many other researchers in computational modeling is that teachers are often reluctant to incorporate modeling 
due to its high startup costs, particularly the cost of learning to “code” (Ertmer & Ottenbreit-Leftwich, 2013; 
Guzdial 1994; Hsiao et al. 2019).  

ICLS2022 Proceedings 1719 © ISLS



 
 

 

In a current research project, working with our partners at NYU, we found that students — including 
English language learners — in a 5th grade classroom were able to use our online ABM tool, StarLogo Nova 
(www.slnova.org), to create models of microbes breaking down solid food into waste products and gas, conserving 
the overall mass of the system to match their “landfill bottle” physical models. In post interviews, these students 
demonstrated systems thinking as they explained the process of modeling the phenomena. They were able to 
reason more effectively about aspects included in their models than about hypothetical scenarios they had not 
modeled (Haas et al., 2020), which underscores how important having created the model is to students'  ability to 
make sense of the phenomenon. In this full-year curriculum, the costs can be amortized across a whole year, but 
many teachers need activities that can be integrated into existing curricula within a more constrained time frame. 

We have reconciled the need to address particulars of the curriculum with the desire to build student 
modeling skills across the year by making changes to the StarLogo Nova platform in the form of “custom blocks.”  
We developed StarLogo Nova to be beginner-friendly, using a blocks-based programming language to reduce the 
barriers of syntax faced by novices (Klopfer et al., 2009). However, the process of modeling concepts or 
phenomena from a set of domain-general programming primitives remains challenging (Anderson & Wendel, 
2020). Recently, domain-specific modeling languages/environments (DSMLs/DSMEs) have attempted to narrow 
the conceptual gap between programming language semantics and scientific phenomena (Hasan & Biswas, 2017). 
For example, whereas StarLogo Nova’s modeling language may represent a predator’s “hunt” behavior as “face 
toward nearest prey agent; move forward 1 space; on collision, delete prey and increase my energy trait,” a DSML 
for ecosystems may simply use “chase prey; if I catch prey, eat it”. 

In science education, these DSMLs are typically implemented as sets of “custom blocks” layered on top 
of existing primitives in a modeling environment. These blocks are carefully designed by educators to be beginner-
friendly, but are typically treated as “black boxes” to shield students from the underlying implementation (e.g. 
Basu et al., 2013; Wilkerson-Jerde, Wagh et al., 2015). In contrast, in computational thinking/computer science 
education, blocks-based programming environments engage learners themselves in the process of creating and 
modifying custom blocks as an introduction to procedural abstraction; Snap!’s previous version was even named 
“BYOB: Build Your Own Blocks” (Harvey, 2020). 

StarLogo Nova’s new custom blocks feature aims to combine these ideas. Rather than viewing the 
custom blocks of a DSML as black boxes to hide underlying complexity, we have intentionally designed StarLogo 
Nova’s new custom blocks feature to capitalize on StarLogo Nova’s “blocks all the way down” language 
architecture, hoping to transform a custom block’s underlying implementation from a liability into an opportunity. 
Because custom blocks can themselves contain custom blocks, we envision and are beginning to investigate a 
layered abstraction approach, with DSML blocks providing not only a seamless introduction to computational 
modeling, but also a path to deeper understanding by allowing students to “look inside,” reading and modifying 
code at successively more domain-general (and therefore more flexible and powerful) layers of abstraction as 
their computational modeling skill grows. 

 
Paper 5: Towards Sustained Computational Modeling: Exploring Strategies to  

Support Extended Investigations in Middle School Classrooms 
 

Aditi Wagh, Tamar Fuhrmann, Michelle Wilkerson, Engin Bumbacher & Paulo Blikstein 
 

There is now a considerable amount of research exploring how, through design and pedagogy, educators 
can lower the barrier to computational modeling for young learners. For example, modeling environments that 
make use of accessible media like block-based (e.g., Klopfer, Yoon & Um, 2005) and/or domain-specific (e.g., 
Repenning & Summer, 2005; Wilkerson, Wagh & Wilensky, 2017) toolkits ease the technical aspects of 
programming, whilst pedagogical approaches such as embodied (e.g., Wilensky & Reisman, 2006) and bifocal 
modeling (Blikstein et al., 2016; Fuhrmann et al., 2018) support conceptual aspects of computational modeling. 
This research has contributed to our understanding of how to make computational modeling an accessible practice 
in science classrooms. However, less is known about how to make computational modeling a sustained practice 
in classrooms. By “sustained”, we mean engaging in extended investigations using computational modeling.  

In this paper, we will describe how our research aims to foster sustained engagement in modeling using 
data from co-design sessions with teachers and classroom implementations. We draw on two design strategies 
from the broader scientific modeling literature (Lehrer & Schauble, 2012; Manz, 2015) in which extended 
investigations with modeling and iterative refinement are part of what students do. We use these strategies in the 
design of the computational modeling toolkit and the curriculum. The first strategy involves building uncertainty 
into student investigations through experimental data to create resistances for students to consider, tackle, and 
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possibly resolve (Manz, 2015). Tackling such uncertainties together with the use of data can amplify disciplinary 
ideas while supporting progress along a modeling trajectory. In related work, the authors of this paper have 
integrated computational modeling with data in order to highlight — rather than dismiss — discrepancies between 
models and data, bringing noise, uncertainty, and intrinsic differences between them to the forefront (Blikstein et 
al., 2016). This bifocal modeling approach has been successful in several domains, but for relatively shorter 
interventions (Fuhrmann et al., 2020). The second strategy we draw on is repeatedly revisiting a small set of 
disciplinary ideas from multiple perspectives to pursue extended investigations (Lehrer & Schauble, 2012). We 
envision this as enabling students to construct, deconstruct, and recombine models of related phenomena as well 
as unpacking blocks and chunking them in ways that can be meaningful for students. We see this as a way to 
deepen engagement in modeling so as to develop an epistemologically rich perspective on the role of 
computational modeling in understanding a phenomenon.  

In our paper, we report on co-design sessions with three middle school science teachers as they provide 
feedback on the computational modeling toolkit and refine two curricular activities. Our analysis describes the 
role that teachers expect the data to play in supporting students’ computational modeling activities, and how to 
support students in coordinating data analysis and model refinement. We also describe how teachers suggest 
linking across curricular topics, particularly through model construction, deconstruction, and recombination. 
Finally, we share challenges teachers anticipate in this work.  
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