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Abstract: Constructing computational models is a central practice for K-12 students to refine 

and validate their understanding of scientific phenomena and develop computational practices. 

Our work decomposes that practice by investigating the design moves students take while 

constructing models through programming. Using log data and video recordings from three 

pairs of students to find patterns in programming actions while interacting with an agent- and 

block-based modeling environment, we identify six design moves students used. In addition, 

we situate the occurrence of those moves over time and provide vignettes that illustrate them in 

context. Finally, we reflect on how our findings support the argument that computational 

modeling, particularly programming models, provides a fertile ground for promoting modeling 

and computational practices. 

Introduction 
Constructing computational models is a central practice for concretizing and validating hypotheses, requiring 

students to express their understanding of scientific phenomena as rules and behaviors (Sengupta et al., 2013; 

Weintrop et al., 2016; Wilkerson et al., 2015; Xiang & Passmore, 2010). Scholars have examined how 

constructing computational models supports the learning of computing, with evidence of a varied range of 

practices and skills, such as debugging and writing code iteratively (e.g., Hutchins et al., 2021; Metcalf et al., 

2021; Wagh et al., 2017). Additionally, research has identified challenges students face when constructing models, 

both computational and science domain-related (e.g., Basu et al., 2016). In this paper, we investigate the design 

moves (sequence of changes in the code informed by the interaction with computational models and real-world 

data) students make while programming agent-based models and describe their relationship to modeling and 

computational thinking practices. Specifically, we propose the following research question: what design moves 

do students make while programming computational agent-based models? 
In this work, we use MoDa (“Modeling + Data”, https://moda.education), a web-based computational 

modeling environment created by the authors and inspired by previous work on domain-specific languages 

(Wilkerson et al., 2015) and model/real-world data comparison (“Bifocal Modeling,” Blikstein, 2014). MoDa 

lowers the entry point to programming with domain-specific blocks, allowing students to focus on modeling 

entities' rules and behaviors rather than coding (Fuhrmann et al., 2023; Wagh et al., 2022); and allows for 

comparison with real-world data. To answer the research question, we analyze log and video data from three pairs 

of 6th-grade students engaging with MoDa in science class. We identify and describe six prototypical design 

moves students made and reflect on how these moves are related to practices in modeling and computing.  

Theoretical background 
Our work builds on existing descriptions of constructing computational models as a key modeling practice at the 

intersection of science and computing. Although both using and developing models have been advocated in K-12 

science education (NGSS Lead States, 2013), the benefits of students creating or developing rather than exploring 

or using pre-built models have been emphasized by previous work (e.g., Blikstein & Wilensky, 2009; Fuhrmann 

et al., 2018; Wagh & Wilensky, 2018). In agent-based modeling (ABM), programming models involve encoding 

entities in the system, their properties, and behaviors in a way that a computer can interpret (Wilensky & Reisman, 

2006). Within the ABM paradigm, researchers have adopted block-based and domain-specific programming 

approaches to lower the threshold for learners to construct computational models (e.g., Wilkerson et al., 2017).  
Our work also extends research on identifying computational practices in computational modeling using 

log data analysis, which is one of the data sources we use in this paper. For instance, Blikstein (2011) employed 

quantitative techniques to investigate programming strategies from engineering students while writing ABMs of 

scientific phenomena. Through extensive log data analysis, he identified patterns such as coding in small 
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 increments by trial-and-error, building code upon existing examples, and copying and pasting code from external 

or their own programs. Employing log and video data from two pairs of 7th-grade students, Wagh et al. (2017) 

defined a construct, namely “anchor code,” that represents a stable piece of code for a computational model from 

which further explorations take place. The authors argued that anchor code also reflects the computational practice 

of creating modular solutions to a given problem. Likewise, Metcalf et al. (2021) used log-based snapshots from 

3rd-grade students to explore the development of computational thinking concepts and practices while designing 

scientific models in a block-based programming environment. They found evidence of students' increased fluency 

in concepts such as loops, sequence, and conditionals, along with the enactment of practices such as 

experimenting, iterating, testing, and debugging computer code. Lastly, by combining log data and discourse 

analysis from high school students working in groups, Hutchins et al. (2021) identified specific strategies 

employed by the groups, such as tinkering using multi-visual feedback, and contrasted their use for model-

building and debugging. 

Building on this existing work, we aim to characterize students’ design moves - a collection of strategies, 

or “smaller pieces”, that decompose the process of programming models. By combining the analysis of MoDa log 

interactions with qualitative observation from screen and video recordings, we seek to infer how students enact 

computational practices in programming models. 

Methods  

Setting and data sources 
Our focal participants are three pairs of 6th-grade students from three schools in California who engaged with an 

instructional unit on diffusion. The unit occurred over 6-8 class periods for school but followed the same set of 

activities. First, students conducted an experiment to compare the rate of ink spread in hot and cold water, and 

drew “paper models” to explain the difference in the rate of spread across the two conditions. Then, students used 

MoDa to program models to explain their observations and shared them with the class for feedback and iteratively 

refined their models over several class periods. Finally, students discussed the validity of their models by 

comparing them to real-world data and watched a video of the canonical explanation for diffusion.  
Data sources included screen and audio recordings from each pair and log records from students’ work 

in MoDa. We selected pairs with the longest screen recording time available in each class. The video length for 

pairs #1, #2, and #3 were 183, 55, and 59 minutes; while pair #1 interacted with MoDa for 4 class periods, pairs 

#2 and #3 interacted with it for 3 class periods. Log records captured every action students made while interacting 

with MoDa through mouse movements, such as clicking the “play” button to start a simulation or dragging a block 

to delete it. Each action was recorded as an event linked to a specific student account. 

MoDa: Modeling environment 
MoDa features three main areas (Figure 1) that oriented our analysis. In the Design area, built on Google’s 

Blockly, students program ABMs by dragging and dropping a set of domain-specific blocks to create, delete, and 

refine their models. In the Simulation area, built using the NetLogo engine (Wilensky, 1999), students initialize 

and run their simulations and adjust phenomenon-relevant parameters (e.g., temperature). In the Data area, 

students play and select between real-world videos which, in this unit, were of ink spreading in hot and cold water. 

 

Figure 1 

MoDa Design, Simulation, and Data Areas Used to Categorize and Analyze Log Data 
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 Data analysis 
We based our analysis on existing work that uses learning analytics techniques to support qualitative analysis 

(Sherin et al., 2018) by using log and video data from students. The first author developed a Python script to 

generate visualizations using students' log data. This script represented students' specific actions over time, 

categorized according to the three areas in Figure 1. The sample graph in Figure 2 illustrates the visualization: 

each student’s action is presented by a dot, with its x- and y-positions indicating the timestamp and the code size 

(i.e., number of active blocks) at that moment, respectively. To enhance clarity, a color scheme was implemented 

to differentiate between categories and actions. In addition, vertical bars were included to help identify sequences 

of actions from the same category. The definition and criteria for when a bar should “end” varied depending on 

their respective area and were based on watching a sample of students’ screen recording video; design bars ended 

immediately after a student’s last design action, while simulation and data bars were extended until an action of 

a different area was recorded. 

 

Figure 2 

Sample Visualization of Sstudents' Log Data over Time 
 

 
 

The first two authors analyzed the graphs from each pair to identify patterns in students’ actions around 

constructing computational models. This analysis was based on the length of each sequence of actions as well as 

on the actions that immediately preceded and succeeded it. The authors independently identified these patterns; 

the rounded rectangles in Figure 2 represent four examples of patterns identified in the graph. The first two authors 

compared and refined their analyses to arrive at a mutual understanding about which patterns to retain for the 

subsequent stages. Next, they examined video segments corresponding to each of the visual patterns. For each 

visual pattern, at least one sample was chosen from the three pairs, with pair #1 being the primary source during 

this phase. The authors collaboratively reviewed these video segments, engaging in in-depth discussion to 

establish a shared interpretation. For example, the authors noticed that a specific visual pattern in the log data 

(individual or short design actions followed by interaction with the simulation area) could either resemble students 

fixing a bug in their model (“debugging”) or making small improvements, such as calibrating the number of 

particles (“fine-tuning”). Although those behaviors could not be distinguished based on the log data only, they 

were classified as different moves. The action segments derived from this analysis are referred to as “design 

moves”. The authors defined each design move based on both students’ work in the video and how the move was 

reflected in the log data, associating them with practices identified in prior work. An outcome of this analysis was 

that each design move had a corresponding video fragment, as elaborated in the subsequent section. Finally, the 

first author expanded the analysis to identify design moves within the log data graphs of each pair, utilizing video 

data when available to validate the categorization. This process resulted in the creation of a visual representation 

depicting the occurrence of each design move. 

Findings 
Based on our analysis, we identified six distinct design moves enacted by the three student pairs. Below, we define 

each move, ordered chronologically based on its occurrence in our data. We then present vignettes to demonstrate 

the moves in action. In addition, we offer representations of design moves over time to indicate when and how 

frequently these moves took place throughout the unit.  
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 Design moves: Definition, appearance, and context 
Figure 3 presents each design move and a sample of the visual pattern in the log data that represents them; arrows 

point to individual occurrences of a move in the same figure, while vertical lines highlight the jumps in code size. 

We then describe each move and the context in which it was identified.  

 

Figure 3 

Sample Visualization of Students’ Log data over time 

 
 

Exploratory design: students make changes in their code and test them for the first time. The log data 

includes 1-4 design actions, followed by a small number of actions in the simulation area. Exploratory design 

moves were often prompted by the unit’s introductory challenges and by student-driven experimentation on the 

role of specific MoDa blocks.  
Debugging design: students make small changes in their code and test them after facing an error or a 

malfunction in the simulation. The log data typically includes one design action preceded and succeeded by 

numerous actions in the simulation area (e.g., setting and resetting the model before running it). Students often 

debugged their code after getting error messages when the simulation did not work as expected.  
 Fine-tuning design: students make small changes in their code and test them out after successfully 

running their simulation. The log data includes 1-2 design actions preceded and followed by successfully running 

the simulation and adjusting its parameters (e.g., temperature). Fine-tuning and debugging design moves are very 

similar to each other, differing in what drives small changes in the code. While debugging design was driven by 

unexpected malfunctions, students often fine-tuned their code to improve the model’s accuracy. 
 From-scratch design: students make large changes in their code, usually starting over a blank screen. 

The log data includes a long sequence of uninterrupted design actions, with no clear influence of previous actions. 

Students usually performed from-scratch design when they had issues opening the previous model, or decided to 

create models for alternative theories. 
Remixing design: students make small changes in their code by copying, pasting, and adapting a chunk 

of existing code in their model. The log data includes a jump in the code size during a sequence of design actions, 

with no clear influence of previous actions. Students often remixed their code when they realized they could 

design a specific feature or mechanism in their model by adapting a piece of code already available. 

 Data-informed design: students make small changes in their code after interacting with video data. The 

log data includes 1-3 design actions preceded by actions with both the video and simulation areas. As the 

description above suggests, students often performed data-informed design after comparing their models with 

real-world video data. In other words, while debugging and fine-tuning moves were informed by interactions with 

the simulation, data-informed design was informed by the alternation between simulation and video data. 
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 Design moves in action: Vignettes 
Below, we provide illustrative vignettes for two design moves, based on the data of a single pair of students. 

 

Vignette #1: Exploratory design moves. Student 1(S1) and Student 2 (S2) were exploring MoDa for the first time. 

At first, they used the design challenges provided by their teacher (T). 

 
1. T:  So, your goal is to get water particles moving around. (S1 drags the block "ask water 

particles" and a "move" block to the "Setup" block setting. T then intervenes). 

2. T:  What do you want to do in the setup? 

3. S1:  Oops, go and mouse click, go. (S1 drags the blocks to the "Go" setting and drags the 

block "create water particles" to the "Setup" setting. Then S1 clicks on "setup" and 

"go" buttons under the Simulation area, to “play” the simulation, which leads to small 

blue circles moving around. After solving the remaining challenges, S2 goes through 

the library of blocks and adds "if" and "touching ink particles" under "ask water 

particles", which is under the "go" setting block). 

4. S2:  I don't need help. I have an idea. 

5. S1:  I have an idea, too; I just want to show you.  

6. S2:  You can explain your idea to me, and I will do it for you. But it is my turn to touch the 

computer. 

7. S1:  If touching ink particles, attach particles (S2 drags an "attach particles" block to an 

"if touching ink particles" condition).  

8. S2:  No, we don't want them to attach. We want them to spread, not to attach (S2 clicks on 

"setup" and "go" buttons under the simulation area). 

9. S1:  Yes, and that is what they're doing. 

10. S2:  No, it's not, you're guessing. 

 

This vignette illustrates two instances of an exploratory design move. In the first one (lines 1-3), S1 

assembled a piece of code with three blocks and tests it in response to a challenge to make water particles move 

around. In the second instance (lines 4-10), S2 added a conditional behavior into the code, and S1 interjected by 

asking S2 to test the attached mechanism for particles' spread (represented by the "attach" block).  
Those two examples represent situations in which students explored the functionality of the blocks, 

usually for the first time, either following a task given by the teacher or testing an idea for the first time. In those 

moments, the students needed to interact with the simulation area immediately after designing to test their code 

before making new changes, usually another set of exploratory design moves. Although the sequence of designing 

and compiling the code is present in all the design moves, the exploratory design strongly illustrates the 

incremental and iterative nature of computational thinking (Brennan & Resnick, 2012). 
 
Vignette #2: Data-informed design moves. T asked S1 and S2 to demonstrate their MoDa model. They played the 

video for cold water diffusion and initiated the simulation at 0ºC. The teacher asks about a specific part of the 

code and then comments on their model. 

 
1. T:  I think you need to do a little tinkering with it because that doesn’t look exact. 

2. S1:  It is not exactly but compare it to the hot water diffusion (S1 changes the video to hot 

water, resets the model, changes the temperature to 50ºC, and runs the model). 

3. T:  But your ink is staying in, like, one spot. 

4. S1:  That is true. I should make it move; it should move.  

5. T:  Yeah, so think about it. Because you want your ink [to move] (T leaves; S1 adds "ask 

water particles" and "move" under "setup". S1 sets and runs the model again at 

different times without playing the video). 

 
This vignette illustrates data-informed design. Prompted by the teacher to compare students’ model 

simulation with the video, students noticed a discrepancy between model simulation and video data and came up 

with an idea for further modifications. This example illustrates students making changes in their code because of 

a previous interaction with the video data and the simulation, more specifically, the discrepancies between the 

real and the model (Fuhrmann et al., 2023). 
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 Design moves over time 
Figure 4 presents the occurrence of each design move over time for each pair of students analyzed. Note that each 

rectangle represents a single move, which may encompass various design actions (e.g., from-scratch design 

usually encompassed over ten design actions, while fine-tuning design was mostly represented by single design 

actions in the log data). The blank spaces between design moves on each day represent design actions we could 

not classify into any of the design moves we defined (8% of the moves). 

 

Figure 4 

Design Moves of Three Pairs of Students over Time 
 

 
Observing across pairs reveals potential patterns associated with each of the moves. Exploratory design 

was evident on all days, with a notable concentration on the first day of engaging with MoDa; in general, students 

engaged with multiple rounds of exploratory design moves until they got to an error or started polishing their 

code. This trend aligns with the curriculum’s structure, as the initial prompts encouraged students to explore the 

functionality of various blocks. It also suggests an ongoing experimentation with different ideas throughout the 

subsequent days, showcasing the diversity of achievable combinations even with a limited set of domain-specific 

blocks.  
On the other hand, debugging design moves were not consistent across pairs. While pairs #2 and #3 dealt 

with a significant number of errors on the first day, pair #1 made a consistent amount of debugging design moves 

throughout the unit. Those preliminary observations might inform different programming profiles, from paying 

attention to the rules and following instructions to risk-taking and exploring while coding, which can likely benefit 

from in-depth analyses of the types or errors and solutions. Instances of fine-tuning design moves emerged on day 

#1, but increased on day #2 forward, typically after achieving a stable version of their code, either following 

successful exploration or after debugging an error.  
From-scratch design moves appeared in all pairs, particularly on day #2. Although driven by different 

motivations, such as an issue of loading a previous model or students deciding to start a new project, from-scratch 

design indicates some levels of mastery with MoDa, usually on students' second day of using the tool. It was 

usually aligned with the teacher asking students to compare their model against the real-world video 

data. Remixing design was identified in pairs #1 and #3 in similar contexts, that is, when students copied and 

pasted if-conditions for temperature and speed and adapted parameters for different temperature levels. Finally, 

data-informed design was also identified in all pairs on their last day of MoDa work. 

Discussion and implications 
Despite the small sample size, our findings identify and describe six distinct design moves 6th-grade students 

made when constructing computational models. These moves differ from each other in the log data’s structure 

and the student's objectives, marking various phases of the computational modeling process. We argue that design 

moves can be interpreted as a collection of strategies that decompose the process of constructing computational 

models. By unpacking the construction process of computational models, we learned about students' learning in 

relation to modeling and computational practices. It's worth noting that, in each move, students not only 

constructed pieces of their models but also tested, evaluated, and revised them, all of which are defined as key 

elements of modeling (Schwarz et al., 2009; Weintrop et al., 2016). For instance, while debugging and fine-tuning, 

students were required to identify potential errors and points for improvement, implement changes in their code 

and test them out. Likewise, while making data-informed design, students evaluated the differences between a 
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 model simulation and real-world data to inform potential changes in their code (Fuhrmann et al., 2023). In other 

words, each of the six design moves is intertwined with scientific modeling practices. 

On the other hand, the design moves also illustrate specific computational practices the context of 

constructing computational models. For instance, debugging design illustrates a practice commonly defined in the 

computational thinking literature as detecting and identifying errors and then fixing the errors when a solution 

does not work as it should (Brennan & Resnick, 2012; Hutchins et al., 2021; Shute et al., 2017). Similarly, fine-

tuning design being performed over a stable version of the model resembles the notion of an anchor code for 

students to build on, as defined by Wagh et al. (2017). Exploratory design moves illustrate the iterative 

experimentation with block-based code in the process of designing computational artifacts (Brennan & Resnick, 

2012; Metcalf et al., 2021). Also, comparing exploratory design and from-scratch design moves resemble different 

programming patterns students enact while learning to code, such as tinkering and planning (Blikstein et al., 

2014). Finally, remixing design suggests the ability to adapt existing parts of a model and use it in slightly different 

contexts by replicating a general code structure and changing specific elements on it (e.g., modifying a parameter 

or replacing a behavior), which illustrates students’ ability to modularize and abstract computer code (Blikstein, 

2011; Shute et al., 2017). Although further investigation is required to associate each design move with 

computational practices, the documented design moves can serve as preliminary evidence of students performing 

practices commonly described in the field of computer science. Most importantly, our findings support the 

argument that computational modeling, specifically constructing computational models, provides a fertile ground 

for promoting both modeling and computational practices. 

To summarize, this paper identifies design moves students make for programming scientific models and 

underscores their relationship with broader practices in modeling and computing. Going forward, we plan to 

extend our analysis of the design moves to larger data sets using quantitative analysis and machine learning 

techniques like clustering. This could include data from additional instructional units as well as data from more 

students to enhance generalizability. Extending our analysis across student groups could also deepen our 

understanding of how factors such as programming expertise might impact students’ design moves. Nevertheless, 

this study contributes to the computational modeling literature by unraveling the complexities of students’ 

modeling processes, allowing us to link these steps with the design of resources for scaffolding learning. This 

equips teachers and designers with more specific strategies to support students in the central practice of 

constructing computational models. 
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